Bayes Shrinkage Minimax Estimation in Inverse Gaussian Distribution

نویسنده

  • Gyan Prakash
چکیده

The Inverse Gaussian distribution plays an important role in Reliability theory and Life testing problems. It has useful applications in a wide variety of fields such as Biology, Economics, and Medicine. It is used as an important mathematical model for the analysis of positively skewed data. The review article by Folks & Chhikara [1,2] and Seshadri [3] have proposed many interesting properties and applications of this distribution. Let 1 2 be a random sample of size drawn from the inverse Gaussian distribution , , , , n x x x  , n   μ θ IG , : having probability density function

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Adaptive Bayesian density estimation using Pitman-Yor or normalized inverse-Gaussian process kernel mixtures

We consider Bayesian nonparametric density estimation using a Pitman-Yor or a normalized inverse-Gaussian process kernel mixture as the prior distribution for a density. The procedure is studied from a frequentist perspective. Using the stick-breaking representation of the Pitman-Yor process or the expression of the finite-dimensional distributions for the normalized-inverse Gaussian process, w...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

Estimation of the mean vector in a singular multivariate normal distribution

This paper addresses the problem of estimating the mean vector of a singular multivariate normal distribution with an unknown singular covariance matrix. The maximum likelihood estimator is shown to be minimax relative to a quadratic loss weighted by the Moore-Penrose inverse of the covariance matrix. An unbiased risk estimator relative to the weighted quadratic loss is provided for a Baranchik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011